skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Matrai, Patricia A"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The rapidly warming Arctic has transitioned to thinner sea ice which fractures, producing leads. Few studies have investigated Arctic sea spray aerosol (SSA) produced from open ocean, leads, and melt ponds, which vary in salinity and organic and microbial community composition. A marine aerosol reference tank was deployed aboard an icebreaker to the Arctic Ocean during August–September 2018 to study SSA generated from locally collected surface waters. Aerosol generation experiments were carried out using water collected from the marginal ice zone, a human-made hole in sea ice near the North Pole, and both lead and melt pond water during an ice floe drift period. Salinity, chlorophyll a, organic carbon, nitrogen, and microbial community composition were measured. Eukaryotic plankton and bacterial abundance were elevated in experimental water from the marginal ice zone, but the relative contributions from major eukaryotic taxonomic groups varied little across the experiments. The chemical composition of individual SSA particles was analyzed using Raman microspectroscopy and computer-controlled scanning electron microscopy with energy-dispersive X-ray spectroscopy. Individual sea salt aerosol, primary organic aerosol, and mineral dust particles were observed. Sea salt aerosol constituted 44–95% of individual submicrometer and 68–100% of supermicrometer particles, by number, generated during each experiment. Carbon was detected in 85%, by number, of the individual sea salt particles, with visible organic coatings. Carbohydrates were detected in 72% of particles, by number, with smaller contributions from long-chain fatty acids (13%) and siliceous material (15%). SSA generated from melt pond water contained only long-chain fatty acids and siliceous material. Quantification of the ice-nucleating activity showed that locally produced SSA may define the High Arctic background ice-nucleating particle population, but cannot account for the peak atmospheric concentrations observed. As the Arctic warms, the increasing SSA emissions have a complex dependence on changing biological and physical processes. 
    more » « less
  2. null (Ed.)
    Marine polymer gels play a critical role in regulating ocean basin scale biogeochemical dynamics. This brief review introduces the crucial role of marine gels as a source of aerosol particles and cloud condensation nuclei (CCN) in cloud formation processes, emphasizing Arctic marine microgels. We review the gel’s composition and relation to aerosols, their emergent properties, and physico-chemical processes that explain their change in size spectra, specifically in relation to aerosols and CCN. Understanding organic aerosols and CCN in this context provides clear benefits to quantifying the role of marine nanogel/microgel in microphysical processes leading to cloud formation. This review emphasizes the DOC-marine gel/aerosolized gel-cloud link, critical to developing accurate climate models. 
    more » « less